La quema de combustibles fósiles ha provocado un aumento de dióxido de carbono (CO 2 ) en la atmósfera. Los océanos absorben alrededor de un tercio de este dióxido de carbono, lo que provoca cambios en la quÃmica oceánica. Además, los aumentos en la escorrentÃa de agua dulce y nutrientes también pueden causar cambios en la quÃmica de los carbonatos de las aguas costeras. Estos procesos locales y regionales juegan un papel particularmente importante en la acidificación de la región sureste. Explore las ubicaciones de monitoreo y la quÃmica del ecosistema a continuación.
​
Coral reefs represent an economically valuable resource in Florida and are particularly vulnerable to changing ocean chemistry. The carbonate chemistry around coral reefs is a function of multiple processes that change with both diel (day and night) and tidal cycles. The changes that occur between day and night are a function of photosynthesis, respiration, and calcification. Photosynthesis during the day draws down carbon dioxide, increasing pH, while respiration at night does the opposite. Determining the balance between all of these reef ecosystem processes helps scientists quantify overall reef growth. There is evidence that reefs at the northern edge of the Florida Reef Tract experience seasonal dissolution (Muehllehner et al. 2016).
FLORIDA
TECLAS
The Gray’s Reef National Marine Sanctuary is an extensive area of live-bottom reef off the coast of Georgia. The rocky region of the seafloor hosts a diversity of marine life. The Gray’s Reef ocean acidification mooring is located 40 nautical miles southeast of Savannah, Georgia. The mooring provides valuable information about the carbonate chemistry of the region, detecting changes to chemistry from both land-based inputs and atmospheric carbon dioxide.
Recent research from data collected at the mooring helps discern whether the region is primarily a source or sink for atmospheric carbon dioxide. Learn more about ocean acidification research at Gray’s Reef National Marine Sanctuary.
GRIS
ARRECIFE
Estuaries are dynamic coastal ecosystems that experience rapid swings in chemistry. The carbonate chemistry of Southeast estuaries is influenced by respiration of organisms (breathing out carbon dioxide, just like us), the decay of organic material and freshwater outflow from rivers. Increases in any of these processes would increase carbon dioxide content in coastal waters in addition to ongoing acidification from increasing atmospheric carbon dioxide.
The Southeast is one of the most rapidly developing regions of the U.S. Increases in development leads to an increase in impervious surfaces (surfaces that don’t allow rainwater to infiltrate). This means that there is more freshwater and pollution runoff into coastal ecosystems. Increases in freshwater reduce the ability of coastal ecosystems to buffer against changes in carbon dioxide, reducing the pH, and making the seawater more acidic. Runoff can also cause increases in nutrients (e.g. from fertilizers) in local waterways leading to algal blooms. Through a mechanism called eutrophication, this also has the potential to alter carbonate chemistry in coastal ecosystems.
Though these are very different mechanisms by which carbon dioxide can increase in the ocean and coastal waters, the impacts to coastal organisms may be similar. Understanding the source of changing chemistry is important for mitigation efforts and SOCAN seeks to increase monitoring that will help interpret the source of these changes.
ESTUARIOS
PUBLICACIÓN:
Acidificación en el sureste de EE. UU.
Los miembros de la SOCAN publicaron recientemente un artÃculo, Acidificación en el sureste de EE. UU.: Causas, posibles consecuencias y el papel de la red de acidificación de las costas y los océanos del sureste , en Frontiers in Marine Science.
WEBINAR:
Ayuntamiento de SOCAN
El Ayuntamiento de SOCAN el 10 de septiembre de 2020 está disponible para su visualización. Si te lo perdiste o estás interesado en volver a verlo, haz clic aquà .